Vehicle-to-Everything (V2X) technology has the capability to enhance road safety by enabling wireless exchange of telematics and spatiotemporal information between connected vehicles (CVs). Effective V2X communication depends on rapid information sharing between Roadside Units (RSUs), in-vehicle On-Board Units (OBUs), and other connected infrastructure. However, there are increasing concerns with RSUs related to installation needs, reliability, and coverage, especially on rural roadways. This study aims to evaluate the benefits of augmenting CV infrastructure with satellite technology in situations where RSU access or coverage is limited while maintaining V2X security protocols and critical information exchange. The study utilizes data from over 400 personal, fleet, and commercial CVs collected during two real-world pilot deployments in the United States, one in an urban environment in Florida and one in a rural environment in Wyoming. The analysis performed shows that the delivery of critical security credential information and traveler information messages (TIMs) to CVs is dependent on a multitude of environmental and operational reliability factors. Overall, information delivery is faster with dense RSU infrastructure as compared to satellites. However, we show that by augmenting RSU infrastructure with satellite technology, the delivery of information is more robust, improving V2X system reliability, security, and overall road safety.
Read full abstract