We established transcriptome and proteome databases for low-birth-weight (LB) and high-birth-weight (HB) calf placentae, identifying key genes and proteins associated with birth weight through bioinformatics analyses that included functional enrichment and protein-protein interactions (PPIs). Both mRNA and protein levels were validated. A total of 1494 differentially expressed genes (DEGs) and 294 differentially expressed proteins (DEPs) were identified when comparing the LB group to the HB group. Furthermore, we identified 53 genes and proteins exhibiting significant co-expression across both transcriptomic and proteomic datasets; among these, 40 were co-upregulated, 8 co-downregulated, while 5 displayed upregulation at the protein level despite downregulation at the mRNA level. Functional enrichment analyses (GO and KEGG) and protein-protein interaction (PPI) analysis indicate that, at the transcriptional level, the primary factor contributing to differences in calf birth weight is that the placenta of the high-birth-weight (HB) group provides more nutrients to the fetus, characterized by enhanced nutrient transport (SLC2A1 and SLC2A11), energy metabolism (ACSL1, MICALL2, PAG2, COL14A1, and ELOVL5), and lipid synthesis (ELOVL5 and ELOVL7). In contrast, the placenta of the low-birth-weight (LB) group prioritizes cell proliferation (PAK1 and ITGA3) and angiogenesis. At the protein level, while the placentae from the HB group exhibit efficient energy production and lipid synthesis, they also demonstrate reduced immunity to various diseases such as systemic lupus erythematosus and bacterial dysentery. Conversely, the LB group placentae excel in regulating critical biological processes, including cell migration, proliferation, differentiation, apoptosis, and signal transduction; they also display higher disease immunity markers (COL6A1, TNC CD36, CD81, Igh-1a, and IGHG) compared to those of the HB group placentae. Co-expression analysis further suggests that increases in calf birth weight can be attributed to both high-efficiency energy production and lipid synthesis within the HB group placentae (ELOVL5, ELOVL7, and ACSL1), alongside cholesterol biosynthesis and metabolic pathways involving CYP11A1 and CYP17A1. We propose that ELOVL5, ELOVL7, ACSL1, CYP11A1, and CYP17A1 serve as potential protein biomarkers for regulating calf birth weight through the modulation of the fatty acid metabolism, lipid synthesis, and cholesterol levels.