Skin wound healing involves a complex gene expression program that remains largely undiscovered in humans. Circular RNAs (circRNAs) and microRNAs (miRNAs) are key players in this process. To understand the functions and potential interactions of circRNAs and miRNAs in human skin wound healing. CircRNA, linear RNA, and miRNA expression in human acute and chronic wounds were analyzed using RNA sequencing and qRT-PCR. The roles of circASH1L(4,5) and miR-129-5p were studied in human primary keratinocytes (proliferation and migration assays, microarray analysis) and ex vivo wound models (histological analysis). The interaction between circASH1L(4,5) and miR-129-5p was examined using luciferase reporter and RNA pull-down assays. We identified circASH1L(4,5) and its interaction with miR-129-5p, both of which increased during human skin wound healing. Unlike typical miRNA sponging, circASH1L enhanced miR-129 stability and silencing activity by protecting it from target-directed degradation triggered by NR6A1 mRNA. TGF-β signaling, crucial in wound healing, promoted circASH1L expression while suppressing NR6A1, thereby increasing miR-129 abundance at the post-transcriptional level. CircASH1L and miR-129 enhanced keratinocyte migration and proliferation, crucial for re-epithelialization of human wounds. Our study uncovers a novel role for circRNAs as protectors of miRNAs and highlights the importance of regulated miRNA degradation in skin wound healing.
Read full abstract