Range-extended electric vehicles have the most complex noise and vibration problems since certain control strategies often make range extenders (REs) shut down or restart for the sake of better fuel consumption. This paper deals with this uncomfortable riding experience, especially during the range extender start phase. A control-oriented nonlinear model for the start–stop vibration analysis, including range extender mount system, engine–clutch–motor shaft system, engine inertia torque and force, engine friction torque, engine gas torque, engine manifold pressure, electric motor torque, and range extender controller, is thus built. In the developed model, a new estimation method for gas torque is proposed, where the initial crank angle is considered and the relevant equations are simplified. The method has proven to predict gas torque accurately without using a complex calculation process. According to the developed model, the active control method, crankshaft stop position control (CSPC) has been proposed. The crankshaft stop position is analyzed as well as the crankshaft movement with different speeds at top dead center is discussed, which lead to the design of the target curves for crankshaft movement during the stop phase. Based on the set-up model, CSPC is finally applied through the cascade control of the motor to evaluate the control effectiveness. The simulation outcomes demonstrate that CSPC can help the crankshaft to finally stop at the optimal initial crank angle, which effectively lessens the vibration in the next start phase.