The global need for energy has risen sharply recently. A global shift to clean energy is urgently needed to avoid catastrophic climate impacts. Hydrogen (H2) has emerged as a potential alternative energy source with near-net-zero emissions. In the African continent, for sustainable access to clean energy and the transition away from fossil fuels, this paper presents a new approach through which waste energy can produce green hydrogen from biomass. Bio-based hydrogen employing organic waste and biomass is recommended using biological (anaerobic digestion and fermentation) processes for scalable, cheaper, and low-carbon hydrogen. By reviewing all methods for producing green hydrogen, dark fermentation can be applied in developed and developing countries without putting pressure on natural resources such as freshwater and rare metals, the primary feedstocks used in producing green hydrogen by electrolysis. It can be expanded to produce medium- and long-term green hydrogen without relying heavily on energy sources or building expensive infrastructure. Implementing the dark fermentation process can support poor communities in producing green hydrogen as an energy source regardless of political and tribal conflicts, unlike other methods that require political stability. In addition, this approach does not require the approval of new legislation. Such processes can ensure the minimization of waste and greenhouse gases. To achieve cost reduction in hydrogen production by 2030, governments should develop a strategy to expand the use of dark fermentation reactors and utilize hot water from various industrial processes (waste energy recovery from hot wastewater).
Read full abstract