This paper aims to develop an optimisation-based price bid generation mechanism for the sellers and buyers in a double-auction-aided peer-to-peer (P2P) energy trading market. With consumers being prosumers through the continuous adoption of distributed energy resources, P2P energy trading models offer a paradigm shift in energy market operation. Thus, it is essential to develop market models and mechanisms that can maximise the incentives for participation in the P2P energy market. In this sense, the proposed approach focuses on maximising profit at the sellers, as well as maximising cost savings at the buyers. The bids generated from the proposed approach are integrated with three different market clearing mechanisms, and the corresponding market clearing prices are compared. A numerical analysis is performed on a real-life dataset from Ausgrid to demonstrate the bids generated from sellers/buyers, as well as the associated market clearing prices throughout different months of the year. It can be observed that the market clearing prices are lower when the solar generation is higher. The statistical analysis demonstrates that all three market clearing mechanisms can achieve a consistent market clearing price within a range of 5 cents/kWh for 50% of the time when trading takes place.
Read full abstract