Neutrino telescopes will open, in the next years, new opportunities in observational high energy astrophysics. In these detectors, atmospheric muons from primary cosmic ray interactions in the atmosphere play an important role, because they provide the most abundant source of events for calibration and test. On the other side, they represent the major background source. In this paper a fast Monte Carlo generator (called MUPAGE) of bundles of atmospheric muons for underwater/ice neutrino telescopes is presented. MUPAGE is based on parametric formulas [Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, Astrop. Phys. 25 (2006) 1] obtained from a full Monte Carlo simulation of cosmic ray showers generating muons in bundle, which are propagated down to 5 km w.e. It produces the event kinematics on the surface of a user-defined cylinder, surrounding the virtual detector. The multiplicity of the muons in the bundle, the muon lateral distribution and energy spectrum are simulated according to a specific model of primary cosmic ray flux, with constraints from measurements of the muon flux with underground experiments. As an example of application, the result of the generation of events on a cylindrical surface of ∼1.4 km 2 at a depth of 2450 m of water is presented. Program summary Program title: MUPAGE Catalogue identifier: AEBT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3534 No. of bytes in distributed program, including test data, etc.: 61 383 Distribution format: tar.gz Programming language: C++ Computer: Pentium M, 2.0 GHz; 2x Intel Xeon Quad Core, 2.33 GHz Operating system: Scientific Linux 3.x; Scientific Linux 4.x; Slackware 12.0.0 RAM: 50 MB Word size: 32 bits Classification: 1.1, 11.3 External routines: The ROOT system ( http://root.cern.ch) Nature of problem: Fast simulation of atmospheric muon bundles for underwater/ice neutrino telescopes. Solution method: Atmospheric muon events are generated according to parametric formulas [1] giving the flux, the multiplicity, the radial distribution and the energy spectrum. Restrictions: Water vertical depth range from 1.5 to 5 km w.e.; zenith angle range from 0 to 85 degrees. Additional comments: The program requires the ROOT libraries for the pseudorandom number generator.
Read full abstract