A filtration system comprising a Biot poroelastic solid coupled to an incompressible Stokes free‐flow is considered in 3D. Across the flat 2D interface, the Beavers‐Joseph‐Saffman coupling conditions are taken. In the inertial, linear, and non‐degenerate case, the hyperbolic‐parabolic coupled problem is posed through a dynamics operator on a chosen energy space, adapted from Stokes‐Lamé coupled dynamics. A semigroup approach is utilized to circumvent issues associated to mismatched trace regularities at the interface. The generation of a strongly continuous semigroup for the dynamics operator is obtained via a non‐standard maximality argument. The latter employs a mixed‐variational formulation in order to invoke the Babuška‐Brezzi theorem. The Lumer‐Philips theorem then yields semigroup generation, and thereby, strong and generalized solutions are obtained. For the linear dynamics, density obtains the existence of weak solutions; we extend to the case where the Biot compressibility of constituents degenerates. Thus, for the inertial linear Biot‐Stokes filtration system, we provide a clear elucidation of strong solutions and a construction of weak solutions, as well as their regularity through associated estimates.