A new nonisolated multiinput multioutput dc-dc boost converter is proposed in this paper. This converter is applicable in hybridizing alternative energy sources in electric vehicles. In fact, by hybridization of energy sources, advantages of different sources are achievable. In this converter, the loads power can be flexibly distributed between input sources. Also, charging or discharging of energy storages by other input sources can be controlled properly. The proposed converter has several outputs with different voltage levels which makes it suitable for interfacing to multilevel inverters. Using of a multilevel inverter leads to reduction of voltage harmonics which, consequently, reduces torque ripple of electric motor in electric vehicles. Also, electric vehicles which using dc motor have at least two different dc voltage levels, one for ventilation system and cabin lightening and other for supplying electric motor. The proposed converter has just one inductor. Depending on charging and discharging states of the energy storage system (ESS), two different power operation modes are defined for the converter. In order to design the converter control system, small-signal model for each operation mode is extracted. The validity of the proposed converter and its control performance are verified by simulation and experimental results for different operation conditions.
Read full abstract