The rapid increase in the number of online resources and academic articles has created great challenges for researchers and practitioners to efficiently grasp the status quo of building energy-related research. Rather than relying on manual inspections, advanced data analytics (such as text mining) can be used to enhance the efficiency and effectiveness in literature reviews. This article proposes a text mining-based approach for the automatic identification of major research trends in the field of building energy management. In total, 5712 articles (from 1972 to 2019) are analyzed. The word2vec model is used to optimize the latent Dirichlet allocation (LDA) results, and social networks are adopted to visualize the inter-topic relationships. The results are presented using the Gephi visualization platform. Based on inter-topic relevance and topic evolutions, in-depth analysis has been conducted to reveal research trends and hot topics in the field of building energy management. The research results indicate that heating, ventilation, and air conditioning (HVAC) is one of the most essential topics. The thermal environment, indoor illumination, and residential building occupant behaviors are important factors affecting building energy consumption. In addition, building energy-saving renovations, green buildings, and intelligent buildings are research hotspots, and potential future directions. The method developed in this article serves as an effective alternative for researchers and practitioners to extract useful insights from massive text data. It provides a prototype for the automatic identification of research trends based on text mining techniques.