Over the last several decades, food irradiation technology has been proven neither to reduce the nutritional value of foods more than other preservation technologies, nor to make foods radioactive or dangerous to eat. Furthermore, food irradiation is a non-thermal food processing technology that helps preserve more heat sensitive nutrients than those found in thermally processed foods. Conventional food irradiation technologies, including γ-ray, electron beam and high energy X-ray, have certain limitations and drawbacks, such as involving radioactive isotopes, low penetration ability, and economical unfeasibility, respectively. Owing to the recent developments in instrumentation technology, more compact and cheaper tabletop low-energy X-ray sources have become available. The generation of low-energy X-ray, unlike γ-ray, does not involve radioactive isotopes and the cost is lower than high energy X-ray. Furthermore, low-energy X-ray possesses unique advantages, i.e., high linear energy transfer (LET) value and high relative biological effect (RBE) value. The advantages allow low-energy X-ray irradiation to provide a higher microbial inactivation efficacy than γ-ray and high energy X-ray irradiation. In the last few years, various applications reported in the literature indicate that low-energy X-ray irradiation has a great potential to become an alternative food preservation technique. This chapter discusses the technical advances of low-energy X-ray irradiation, microbial inactivation mechanism, factors influencing its efficiency, current applications, consumer acceptance, and limitations.
Read full abstract