The Article presents the findings of the studies of the microstructure, chemical and phase composition of the Cr3C2-Ti system alloys obtained by the explosion. Scanning electron microscopy, energy dispersive and x-ray diffraction analyses were used. The program Thermo-Calc software was used to calculate the equilibrium phases. The phase composition of the compact was shown to fully correspond to that of the initial powder mixture during explosive pressing in the modes of heating from 300 ̊С to 600 ̊С. When heated above 600 ̊С, the chemical interaction of the initial components begins with the formation of new boundary phases. Meanwhile, there is a change in the sample destruction nature and a significant increase in hardness, which points to the hard alloy consolidation. The increase in the powder mixture heating in shock waves to 1000 ̊С leads to intensive macrochemical interaction of the powder mixture components and to formation of an equilibrium phase composition. The established temperature limits determine the most appropriate parameters of shock-wave loading when producing hard alloys by explosive pressing.
Read full abstract