The issue of energy supply in outdoor and remote areas has become a significant challenge. Solar-powered self-sustaining rechargeable zinc-air batteries (RZABs) offer a viable energy solution for off-grid regions. However, there has been no specific study on the technical compatibility and adaptability of the solar power generation system and RZABs system, as well as the efficiency of energy conversion and storage in such solar-powered RZABs systems. To address these challenges, this study developed a solar-powered self-sustaining photo-assisted RZABs system based on a photo-responsive polyterthiophene (pTTh) cathode. This system employs pTTh with photo-responsive properties as the cathode catalyst for RZABs, which not only significantly reduces the overpotential of the cathode but also enhances the performance of the RZABs and the overall energy conversion efficiency (reaching 16.2%). In practical applications, the system exhibits excellent stability, operating continuously within a wide temperature range of -15 to 40°C, and demonstrating a stable cycling operation capability of up to 33 days. It provides reliable, low-cost power support for electronic devices such as mobile phones, flashlights, GPS units, and small pollutant detection systems, greatly improving the practicality of these devices in off-grid areas.
Read full abstract