Rapid industrial growth has overexploited fossil fuels, making hydrogen energy a crucial research area for its high energy and zero carbon emissions. Water electrolysis is a promising method as it is greenhouse gas-free and energy-efficient. However, OER, a slow multi-electron transfer process, is the limiting step. Thus, developing efficient, low-cost, abundant electrocatalysts is vital for large-scale water electrolysis. In this paper, the application and progress of transition metal chalcogenides (TMCs) as catalysts for the oxygen evolution reaction in recent years are comprehensively reviewed. The key findings highlight the catalytic mechanism and performance of TMCs synthesized using single or multiple transition metals. Notably, modifications through recombination, heterogeneous interface engineering, vacancy, and atom doping are found to effectively regulate the electronic structure of metal chalcogenides, increasing the number of active centers and reducing the adsorption energy of reaction intermediates and energy barriers in OER. The paper further discusses the shortcomings and challenges of TMCs as OER catalysts, including low electrical conductivity, limited active sites, and insufficient stability under harsh conditions. Finally, potential research directions for developing new TMC catalysts with enhanced efficiency and stability are proposed.
Read full abstract