In this paper, we propose an innovative light-powered LCE-slider system that enables continuous self-circling on an elliptical track and is comprised of a light-powered LCE string, slider, and rigid elliptical track. By formulating and solving dimensionless dynamic equations, we explain static and self-circling states, emphasizing self-circling dynamics and energy balance. Quantitative analysis reveals that the self-circling frequency of LCE-slider systems is independent of the initial tangential velocity but sensitive to light intensity, contraction coefficients, elastic coefficients, the elliptical axis ratio, and damping coefficients. Notably, elliptical motion outperforms circular motion in angular velocity and frequency, indicating greater efficiency. Reliable self-circling under constant light suggests applications in periodic motion fields, especially celestial mechanics. Additionally, the system's remarkable adaptability to a wide range of curved trajectories exemplifies its flexibility and versatility, while its energy absorption and conversion capabilities position it as a highly potential candidate for applications in robotics, construction, and transportation.
Read full abstract