Patients with CKD suffer high rates of thrombosis, particularly after endovascular interventions, yet few options are available to improve management and reduce thrombotic risk. We recently demonstrated that indoxyl sulfate (IS) is a potent CKD-specific prothrombotic metabolite that induces tissue factor (TF) in vascular smooth muscle cells (vSMCs), although the precise mechanism and treatment implications remain unclear. Because IS is an agonist of the aryl hydrocarbon receptor (AHR), we first examined the relationship between IS levels and AHR-inducing activity in sera of patients with ESRD. IS levels correlated significantly with both vSMC AHR activity and TF activity. Mechanistically, we demonstrated that IS activates the AHR pathway in primary human aortic vSMCs, and further, that AHR interacts directly with and stabilizes functional TF. Antagonists directly targeting AHR enhanced TF ubiquitination and degradation and suppressed thrombosis in a postinterventional model of CKD and endovascular injury. Furthermore, AHR antagonists inhibited TF in a manner dependent on circulating IS levels. In conclusion, we demonstrated that IS regulates TF stability through AHR signaling and uncovered AHR as an antithrombotic target and AHR antagonists as a novel class of antithrombotics. Together, IS and AHR have potential as uremia-specific biomarkers and targets that may be leveraged as a promising theranostic platform to better manage the elevated thrombosis rates in patients with CKD.