The objective of this study was to investigate the effects of ohmic (OH) and water bath (WB) cooking on shear parameters, protein degradation and ultrastructure changes of porcine longissimus dorsi muscle at the same endpoint temperatures (EPTs; range, 20–100 °C). The cooking loss and Warner–Bratzler shear force of the OH-cooked meat were significantly lower (P < 0.05) while protein solubility, pH and endothermic transition temperature were higher than those obtained by WB cooking at the same EPTs (range, 20–80 °C). Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that during OH cooking, the meat had slightly fainter protein bands than that of WB-cooked ones. Less obvious shrinkage of the sarcomere and loss in the structure of Z discs were detected especially in OH-cooked meat at EPTs (100 °C). Strong correlations among pH, cooking loss, Warner–Bratzler shear force, sarcoplasmic protein solubility, Tmax2, and Tmax3 were observed in meat following OH cooking.