Background/Objectives: Alzheimer's disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed. Endothelin-1 (ET-1), a vasoconstrictive factor linked to cerebral vascular disease pathology and neuronal injury, could provide insights to better understand racial disparities in AD. As a potent vasoconstrictive peptide that regulates contractions in smooth muscle, endothelial cells, and pericytes, ET-1 may result in cerebral vascular constriction, leading to cerebral hypoperfusion; over time, this may result in neuronal injury, contributing to the pathology of AD. The role of the ET-1 system as a driver of ethnic disparities in AD requires further investigation. In the United States (U.S.), ET-1 dysregulation in Hispanic/Latinx (H/L) ethnic populations has largely been unexplored. Genetics linking ET-1 dysregulation and racial disparities in AD also require further investigation. In this study, we examined the role of the ET-1 protein in human plasma as a potential biomarker with predictive value for correlating with the development of AD by age, race, and sex. Methods: We examined ET-1 protein levels using quantitative mass spectrometry in AA and NHW patients with AD, along with controls. Results: A partial correlation between age at draw and ET-1, stratified by race and sex, while controlling for AD status, was significant for female AAs (r = 0.385, p = 0.016). When the data were not stratified but controlled for AD status, the partial correlation between age at draw and ET-1 was not significant (r = 0.108, p = 0.259). Conclusions: Based on the small number of plasma specimens and no plasma specimens from H/L individuals with AD, we conclude that ET-1 was clearly not a significant factor in predicting AD in this study and will require a larger scale study for validation.
Read full abstract