The etiology of Parkinson's disease (PD) is not well known and there is increasing evidence that oxidative stress also plays an important role in its pathogenesis. Salusins alpha (salusin-α) and beta (salusin-β) affect the central nervous system, vasculature, and kidneys to increase the inflammatory response in endothelial cells, stimulate oxidative stress, and increase monocyte-endothelial adhesion. Neuroinflammation and oxidative stress play roles in the etiopathogenesis of PD. To investigate whether salusin-α and -β are related to PD and whether they are correlated with the development of atherosclerosis, body mass index, disease duration, and the Parkinson's Hoehn and Yahr stage. The low-density lipoprotein cholesterol (LDL-C), total cholesterol, and salusin-β levels were significantly lower and age was significantly higher in Parkinson patients compared to healthy controls (ρ < 0.005). We found a negative linear correlation between salusin-β and the Hoehn and Yahr stage (ρ < 0.001, r = -0.515) in the patients. There was a relationship between salusin-β and PD and a correlation between the salusin-β levels and Parkinson's stage. A possible underlying disease mechanism is an increase in oxidative stress and decrease in neuroprotective effects due to low salusin-β levels. Therefore, the effects of salusin-β in treating Parkinson disease should be evaluated. Further studies are needed to understand the effects of salusin-β treatment on preventing or slowing the course of PD.
Read full abstract