Background and aimsHyperuricemia is an important risk factor for atherosclerosis, yet the potential mechanisms are not well understood. Migration and adhesion of leukocytes to endothelial cells play key roles in initiation and development of atherosclerosis. We investigated monocyte–endothelial cell interactions and potential signaling pathways under uric acid (UA)-stimulated conditions. Methods and resultsPrimary human umbilical vein endothelial cells (HUVECs) were cultured and exposed to different concentrations of UA for various periods. Experimental hyperuricemia rat models were established. Expression of chemoattractant protein-1 (MCP-1), interleukin 8 (IL-8), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were evaluated. Monocyte–endothelial cell interactions were elucidated by chemotaxis and adhesion assays, and nuclear factor-kappa B (NF-κB) pathway was studied using fluorescent microscopy and electrophoretic mobility shift assay. Results showed that high concentration of UA stimulated generation of chemokines and adhesion molecules in ex vivo and in vivo experiments. Migration and adhesion of human monocytic leukemia cell line THP-1 cells to HUVECs were promoted and activated NF-κB was significantly increased. UA-induced responses were ameliorated by organic anion transporter inhibitor probenecid and NF-κB inhibitor BAY11-7082. It was also observed that human endothelial cells expressed urate transporter-1, which was not regulated by UA. ConclusionHigh concentration of UA exerts unfavorable effects directly on vascular endothelium via the NF-κB signaling pathway, the process of which requires intracellular uptake of UA.
Read full abstract