Zeins are commercially important proteins found in corn endosperms. The objective of this study was to evaluate the effect of altering zein levels in corn inbred lines carrying endosperm mutations with differential allelic dosage and analyze the effects on the composition, nutritive value, and starch digestibility of whole-plant corn silage (WPCS) at 5 storage lengths. Three inbred lines carrying 3 different endosperm modifiers (opaque-2 [o2], floury-2 [fl2], and soft endosperm-1 [h1]) were pollinated with 2 pollen sources to form pairs of near-isogenic lines with either 2 or 3 doses of the mutant allele for each endosperm modifier. The experiment was designed as a split-plot design with 3 replications. Pollinated genotype was the main plot factor, and storage length was the subplot-level factor. Agronomic precautions were taken to mimic hybrid WPCS to the extent possible. Samples were collected at approximately 30% dry matter (DM) using a forage harvester and ensiled in heat-sealed plastic bags for 0, 30, 60, 120, and 240 d. Thus, the experiment consisted of 30 treatments (6 genotypes × 5 storage lengths) and 90 ensiling units (3 replications per treatment). Measurements included nutrient analysis, including crude protein, soluble crude protein, amylase-treated neutral detergent fiber, acid detergent fiber, lignin, starch, fermentation end products, zein concentration, and in vitro starch digestibility (ivSD). The nutritional profile of the inbred-based silage samples was similar to hybrid values reported in literature. Significant differences were found in fresh (unfermented) sample kernels for endosperm vitreousness and zein profiles between and within isogenic pairs. The o2 homozygous (3 doses of mutant allele) had the highest reduction in vitreousness level (74.5 to 38%) and zein concentration (6.2 to 4.7% of DM) compared with the heterozygous counterpart (2 doses of mutant allele). All genotypes showed significant reduction of total zeins and α-zeins during progressive storage length. In vitro starch digestibility increased with storage length and had significant effects of genotype and storage length but not for genotype by storage length interaction, which suggests that the storage period did not attenuate the difference in ivSD between near-isogenic pairs caused by zeins in WPCS. Both total zeins and α-zeins showed a strong negative correlation with ivSD, which agrees with the general hypothesis that the degradation of zeins increases ruminal starch degradability. Homozygous o2 was the only mutant with significantly higher ivSD compared with the heterozygous version, which suggests that, if all other conditions remain constant in a WPCS systems, substantial reductions in endosperm α-zeins are required to significantly improve ivSD in the silo.