As a traditional Chinese medicine, Forsythia suspensa (F. suspensa) has attracted much attention due to its significant pharmacological activity. Revealing the spatial distribution of metabolites during F. suspensa development is important for understanding its biosynthesis rules and improving the quality of medicinal materials. However, there is currently a lack of information on the spatial distribution of F. suspensa metabolites. In this work, the spatial distribution and growth metabolism patterns of important metabolites of F. suspensa were studied for the first time using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Using 2,5-dimethylnaphthalene (DAN) as the matrix and detecting in negative ion mode, the spatial distribution and growth patterns of 11 metabolites obtained from longitudinal sections of F. suspensa included pinoresinol, phillygenin, forsythoside A, forsythoside E, rutin, caffeic acid, malic acid, citric acid, stearic acid, oleic acid, and linoleic acid. These results showed the mesocarp and endosperm tissues of F. suspensa were important for storing important functional metabolites. Changes in mesocarp and endosperm growth and development tissues caused large changes in the content of important functional metabolites in F. suspensa. These results provide a basis for understanding the spatial distribution of metabolites in F. suspensa tissues and the significant changes that occur during growth and development, exploring the mechanism of important synthesis of metabolites, regulating the harvest of F. suspensa, and improving the quality of medicinal herbs.