The application of optical microscopy in four-dimensional (spatial and temporal) super-resolution imaging poses challenges because of the requirement of a long acquisition time or high illumination intensity. In this paper, we introduce simultaneous two-angle axial ratiometry (STARII) for <20 nm axial super-resolution imaging and for fast and long-term imaging of live cells up to hundreds of frames per second. This method involves recording two raw images in two incident angle channels in the context of evanescent wave illumination and obtaining the corresponding intensity ratio. Furthermore, we demonstrate the combination of STARII with the lateral super-resolution method to resolve three-dimensional nanoscale structures of microtubules and to visualize the long-term dynamical plasma membrane curvature and fast remodeling of endoplasmic reticulum tubule meshwork and three-way junctions. These demonstrations indicate an important potential application of STARII in investigating nanoscale cellular complex processes in the native state.