Both trivalent and hexavalent chromium, i.e., Cr(III) and Cr(VI), respectively, were previously demonstrated to affect invitro germination and ultrastructure of kiwifruit (Actinidia deliciosa) pollen. In the present work, the response to chromium in germinating pollen was evaluated in terms of changes in the polyamine profile. Slight, though significant, increases in free spermidine and spermine occurred after exposure to Cr(III), while the levels remained almost unchanged after Cr(VI) treatment. The spermidine synthase inhibitor cyclohexylamine (CHA) caused a dramatic increase in free putrescine in both chromium-treated and untreated samples, while spermidine content was not affected. Interestingly, CHA positively affected the performance of chromium-treated pollen by partially, though significantly, restoring pollen tube growth. The major growth recovery was registered with 1mM CHA in the presence of Cr(VI), concomitant with a considerable reduction in uptake of the metal. Conversely, endogenous calcium levels were more heavily affected in Cr(III)-treated pollen. The effect of CHA on production of reactive oxygen species also varied depending on the chromium species. The response of pollen to the CHA-induced putrescine excess was compared with that exerted by an exogenous supply of the same diamine. Results show that in Cr(III)-treated pollen, putrescine over-accumulation induced by CHA exerted similar effects as exogenous putrescine, while this was not true in the Cr(VI) treatment. It appears that the diamine was able to improve pollen tolerance to metal stress through different mechanisms, mostly depending upon the chromium species, namely via reduced metal uptake or by substituting for calcium.
Read full abstract