Abstract Many emerging pollutants (also known as micro-pollutants) including pesticides, pharmaceutical and personal care products (PPCPs), and endocrine disrupting chemicals (EDCs) have frequently been detected in surface, ground, and drinking water at alarming concentrations. The emission and accumulation of these anthropogenic chemicals in nature is a potential threat to human health and aquatic environment. Therefore, it is essential to devise an effective and feasible technology to remove the micro-pollutants from water. Activated carbon adsorption has been introduced and utilized as a promising treatment to reduce the concentration of the emerging pollutants in water. A summary of research on the removal of pesticides, PPCPs, and EDCs by activated carbon adsorption process is presented in this report. The effects of carbon characteristics, adsorptive properties, and environmental factors on the adsorption capacity of activated carbon are reviewed. In addition, the mechanisms of the adsorption including hydrophobicity and the nature of the functional groups of activated carbon and organic compounds are discussed. Furthermore, the applied equilibrium adsorption isotherms (Langmuir, Freundlich, BET, Sips, Dubinin-Astakhov, Dubinin-Radushkevich, and Toth) and the most common kinetic models (pseudo-first- and second-order models, film and intra-particle diffusion models, and adsorption-desorption model) are also included for further investigation. This comprehensive review report aims to identify the knowledge deficiencies regarding emerging pollutant treatment via activated carbon adsorption process and open new horizons for the future research on the adsorption of emerging pollutants on activated carbon.
Read full abstract