Parallel to the importance of the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function like primary islets. To increase the efficiency of endocrine pancreatic-like cell differentiation from mouse embryonic stem cells (ESCs), we applied activin-B to nestin-positive selection (protocol 1) and spontaneous differentiation (protocol 2) in different groups including: [A] activin-B, or [B] basic fibroblast growth factor (bFGF), and/or [C] activin-B+bFGF. The differentiated cells expressed most pancreatic-related genes. The number of insulin- and C peptide-positive cells, as well as dithizone-positive clusters in group A of protocol 1 was higher than in the other groups. Significant insulin concentrations in protocol 1 were produced when glucose was added to the medium, in comparison with protocol 2. Moreover, insulin release was increased significantly in group A of protocol 1 even with lower glucose. In conclusion, Addition of activin-B in a nestin-positive selection protocol increased the insulin-secreting cells in comparison with the same protocol with bFGF and/or spontaneous differentiation in presence of bFGF and/or activin-B alone. However, improvements of the current method are required to generate a sufficient source of true beta-cells for the treatment of diabetes mellitus.
Read full abstract