Treating sewage waters contaminated with persistent organic pollutants (POPs) presents a pressing environmental concern, mandating, affordable, implementable and sustainable remediations. Supported catalysts, wherein metal nanoparticles are grafted onto inert supports to endow porosity, reactant access, performance and catalyst re-use are emerging as sustainable catalytic platforms. Herein, size-controllable, mechanically recyclable 3D-Cu2O@megacatalyst of ∼81 ± 5 cm2, ∼37 ± 3 cm2 and ∼1 ± 0.6 cm2 were biofabricated by exploiting the innate metal binding feature of pristine eggshells. The as-fabricated Cu2O@megacatalyst was utilized for the Fenton-like treatment of POPs, with exceptional activities against diverse molecules: antibiotic (tetracycline (TC)), textile dye (methylene blue) and pharmaceutical precursor (4-nitrophenol) with the degradation efficiencies of 95.6 %, 96.8 % and 93.4 %, respectively. Optimization studies revealed that our megacatalyst can function consistently in the presence of various oxidising agents, free radical scavengers, wide pH, temperatures and inorganic and organic contaminants. The catalyst demonstrated stability and catalytic efficiency in different real-time water matrices: ultrapure water-95.6 %, tap water-84 %, lake water-86 %, and river water-91 %. Furthermore, plausible reaction mechanism and decomposition pathways for TC degradation were assessed using GC-MS, while evaluating the toxicity using ECOSAR and oxygen uptake assay, which revealed less toxic reaction intermediates and end products. Overall, our results provide new insight into the sustainable development of a generalized highly stable, scalable, ultra-efficient and mechanically recyclable Fenton-like supported catalyst for the detoxification of POPs in sewage waters.
Read full abstract