Abstract

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with Dehalococcoides isolated from e-waste polluted sites. The occurrence of PBDE debromination in other ecosystems and underpinning OHRB are underexplored. Here we found that debromination of PBDEs is a common trait of sewage sludge microbiota, and diphenyl ether was produced as the end-product at varying quantities (0.6-52.9% mol of the parent PBDEs) in 76 of 84 cultures established with bioreactor sludge. Diverse debromination pathways converting PBDEs to diphenyl ether, including several new routes, were identified. Although Dehalococcoides contributed to PBDE debromination, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia likely played more important roles than previously recognized. Multiple reductive dehalogenase genes (including bdeA, pcbA4, pteA, and tceA) were also prevalent and coexisted in bioreactor sludge. Collectively, these findings contribute to enhancing our comprehension of the environmental fate of PBDEs, expanding the diversity of microorganisms catalyzing PBDE debromination, and developing consortia for bioremediation application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.