In this paper, we provide the Euler–Maclaurin expansions for (offset) trapezoidal rule approximations of the divergent finite-range integrals ∫ a b f ( x ) d x \int ^b_af(x)\,dx , where f ∈ C ∞ ( a , b ) f\in C^{\infty }(a,b) but can have arbitrary algebraic singularities at one or both endpoints. We assume that f ( x ) f(x) has asymptotic expansions of the general forms a m p ; f ( x ) ∼ K ( x − a ) − 1 + ∑ s = 0 ∞ c s ( x − a ) γ s as x → a + , a m p ; f ( x ) ∼ L ( b − x ) − 1 + ∑ s = 0 ∞ d s ( b − x ) δ s as x → b − , \begin{align*} &f(x)\sim K\,(x-a)^{-1}+\sum ^{\infty }_{s=0}c_s(x-a)^{\gamma _s} \quad \text {as}\ x\to a+,\\ &f(x)\sim L\,(b-x)^{-1}+\sum ^{\infty }_{s=0}d_s(b-x)^{\delta _s} \quad \text {as}\ x\to b-, \end{align*} where K , L K,L , and c s , d s c_s, d_s , s = 0 , 1 , … , s=0,1,\ldots , are some constants, | K | + | L | ≠ 0 , |K|+|L|\neq 0, and γ s \gamma _s and δ s \delta _s are distinct, arbitrary and, in general, complex, and different from − 1 -1 , and satisfy \[ ℜ γ 0 ≤ ℜ γ 1 ≤ ⋯ , lim s → ∞ ℜ γ s = + ∞ ; ℜ δ 0 ≤ ℜ δ 1 ≤ ⋯ , lim s → ∞ ℜ δ s = + ∞ . \Re \gamma _0\leq \Re \gamma _1\leq \cdots , \ \ \lim _{s\to \infty }\Re \gamma _s=+\infty ;\quad \Re \delta _0\leq \Re \delta _1\leq \cdots , \ \ \lim _{s\to \infty }\Re \delta _s=+\infty . \] Hence the integral ∫ a b f ( x ) d x \int ^b_af(x)\,dx exists in the sense of Hadamard finite part. The results we obtain in this work extend some of the results in [A. Sidi, Numer. Math. 98 (2004), pp. 371–387] that pertain to the cases in which K = L = 0. K=L=0. They are expressed in very simple terms based only on the asymptotic expansions of f ( x ) f(x) as x → a + x\to a+ and x → b − x\to b- . With h = ( b − a ) / n h=(b-a)/n , where n n is a positive integer, one of these results reads h ∑ i = 1 n − 1 f ( a + i h ) ∼ I [ f ] a m p ; + K ( C − log h ) + ∑ s = 0 γ s ∉ { 2 , 4 , … } ∞ c s ζ ( − γ s ) h γ s + 1 a m p ; + L ( C − log h ) + ∑ s = 0 δ s ∉ { 2 , 4 , … } ∞ d s ζ ( − δ s ) h δ s + 1 as h → 0 , \begin{align*} h\sum ^{n-1}_{i=1}f(a+ih)\sim I[f]&+K\,(C -\log h) + \sum ^{\infty }_{\substack {s=0\\ \gamma _s\not \in \{2,4,\ldots \}}}c_s \zeta (-\gamma _s)\,h^{\gamma _s+1}\\ &+L\,(C -\log h) +\sum ^{\infty }_{\substack {s=0\\ \delta _s\not \in \{2,4,\ldots \}}}d_s\zeta (-\delta _s) h^{\delta _s+1}\quad \text {as $h\to 0$}, \end{align*} where I [ f ] I[f] is the Hadamard finite part of ∫ a b f ( x ) d x \int ^b_af(x)\,dx , C C is Euler’s constant and ζ ( z ) \zeta (z) is the Riemann Zeta function. We illustrate the results with an example.