V-type granular starch (VGS) could be a potential carrier of active substances according to previous research. Its hydrophobic cavity is capable of encapsulating and accommodating guest molecules with hydrophobicity. This study investigates the impact of various encapsulation conditions on curcumin payload capacity, encapsulation efficiency, and composite index, revealing that the optimal conditions for curcumin encapsulation using VGS were an encapsulation temperature of 60 °C, a curcumin addition ratio of 20% (w/w), a reaction duration of 1 h, and an ethanol solution volume of 40% (v/v). This observation is attributed to the hydrophobic capacity of VGS and the environmental sensitivity of curcumin. Furthermore, the initial temperature of thermal decomposition and the maximum weight loss rate temperature occurs for the complex are higher than those of VGS, curcumin, and the physical blend. In the enzymatic resistance experiments, the resistant starch content in the complex increased from 10.38% to 35.12%, while the rapidly digestible starch (RDS) content decreased from 72.77% to 40.62%. Collectively, these findings underscore the immense potential of VGS as a carrier for the transport of sensitive actives.
Read full abstract