Abstract
This study comprises the isolation of quercetin from the bhimkol banana (Musa balbisiana) blossom, encapsulation, and its characterizations. An isolated quercetin rich fraction was obtained from HPLC followed by column chromatography and subsequently encapsulated with chitosan-alginate polyelectrolyte complex at optimum encapsulation conditions obtained by ant colony optimization. Quercetin fraction and encapsulated quercetin were characterized for their physicochemical properties (by HPLC, FTIR, NMR, XRD, Dynamic Light Scattering, and release study). The yield and purity of isolated quercetin rich fractions were 2.35 ± 0.08 μg/ml and 83.12 ± 0.31 %, respectively. After the optimization of encapsulation, quercetin 0.2 %, sodium alginate 4 %, chitosan 0.5 %, and agitation at 300 rpm were found to be the optimal conditions resulting in higher encapsulation efficiency (EE, 84.54 %). EE was significantly improved by a slight increase in sodium alginate, and agitation. Encapsulated quercetin revealed good pH resistance by releasing 68.27 mg QE/g quercetin in simulated gastric fluid at 60 min. Microbeads of encapsulated quercetin showed the structural bond stretching of encapsulating materials and quercetin in FTIR spectra (stretching at 1511 cm−1, 1380 cm−1, and 1241 cm−1 are attributed to the stretching vibration of CO in aromatic rings, and bending vibration of OH bond in phenols). An average particle size of 2.71 μm exhibited the microgel behavior of microbeads (by XRD). The present study on the underutilized variety of banana blossoms has diverse applications in the food and pharmaceutical industries that will productively exhibit effective drug delivery properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.