Bacteriophage terminases are essential molecular motors involved in the encapsidation of viral DNA. They are hetero-multimers whose large subunit encodes both ATPase and endonuclease activities. Although the ATPase domain is well characterized from sequence and functional analysis, the C-terminal region remains poorly defined. We describe sequence-structure comparisons of the endonuclease region of various bacteriophages that revealed new sequence similarities shared by this region and the Holliday junction resolvase RuvC and to a lesser extent the HIV integrase and the ribonuclease H. Extensive sequence comparison and motif refinement led to a common signature of terminases and resolvases with three conserved acidic residues engaged in catalytic activity. Sequence analyses were validated by in vivo and in vitro functional assays showing that the nuclease activity of the endonuclease domain of bacteriophage T5 terminase was abolished by mutation of any of the three predicted catalytic aspartates. Overall, these data suggest that the endonuclease domains of terminases operate autonomously and that they adopt a fold similar to that of resolvases and share the same divalent cation-dependent enzymatic mechanism.