A lab-scale biotrickling filter (BTF) packed with porcelain Rasching ring and ceramsite was applied for co-treating of low concentrations of hydrogen sulfide (H2S) and ammonia (NH3), as major pollutants typically found in e.g., intensive livestock production facilities. In this study, the outlet gas concentrations of H2S and NH3 were used for indicators if the treated gas reached odor-free condition. Overall, excellent removal efficiencies were obtained for both H2S and NH3 in the BTF during Stage I (H2S alone) and Stage II (H2S and NH3). Specifically, the H2S outlet concentration was below the detection limit (∼3.6 ppbv) and the NH3 outlet concentration was less than 0.4 ppmv when the inlet concentrations of H2S and NH3 were around 1.8 ppmv and 35.3 ppmv, respectively. In this case, the running empty bed residence time was 10.2 s. During Stage II, the outlet H2S concentration was decreased significantly when the inlet NH3 concentration was increased, likely due to the influence by pH. Meanwhile, the outlet nitrous oxide (N2O) concentration was kept low (<2% NH3) during the experiment, suggesting a proper operation of the BTF. After the inlet gas shifted from H2S alone at Stage I to H2S and NH3 at Stage II, the main sulfur-oxidizing bacteria (SOB) species in the BTF switched from Acidithiobacillus to Thiobacillus.