Ophiolites are remnants of oceanic crust that have been thrust onto continental crust due to tectonic processes. They are composed of mostly mafic and ultramafic rocks, which are genetically associated with gold, silver, platinum group element (PGE), chrome, manganese, titanium, cobalt, copper, and nickel deposits. The main objective of this research was to identify the spatial distribution of Mesozoic ophiolitic complexes within the Central Afghan Block in Middle Afghanistan using optical remote sensing data and spectral analyses. Distinct algorithms, such as false color composite (FCC), proposed band ratios (PBR), principal component analysis (PCA), and spectral angle mapper (SAM), were used to map the targeted ophiolitic complexes. New band ratios were proposed in this study based on the spectral properties of mafic-ultramafic minerals and rocks, which showed high efficiency. Based on the results, four different ophiolitic complexes were delineated within this study area. These complexes are consistent with previous studies. The accuracy assessment of this study showed an overall accuracy of 72.2%. The findings of this study can significantly contribute to further studies on the emplacement mechanism and paleo-Tethys history of Middle Afghanistan. Also, the spatial distribution of the ophiolitic complexes identified in this study can be used to constrain models of the tectonic evolution of the Central Afghan Block. Additionally, the identification of new band ratios for mapping ophiolitic complexes can be used in future studies of other ophiolite-bearing regions.