BackgroundThe incidence of non-suicidal self-injury (NSSI) has been on the rise in recent years. Studies have shown that people with NSSI have difficulties in emotion regulation and cognitive control. In addition, some studies have investigated the cognitive emotion regulation of people with NSSI which found that they have difficulties in cognitive emotion regulation, but there was a lack of research on cognitive emotion regulation strategies and related neural mechanisms. MethodsThis study included 117 people with NSSI (age = 19.47 ± 5.13, male = 17) and 84 non-NSSI participants (age = 19.86 ± 4.14, male = 16). People with NSSI met the DSM-5 diagnostic criteria, and non-NSSI participants had no mental or physical disorders. The study collected all participants' data of Cognitive Emotion Regulation Questionnaire (CERQ) and functional magnetic resonance imaging (fMRI) to explore the differences in psychological performance and brain between two groups. Afterwards, Machine learning was used to select the found differential brain regions to obtain the highest correlation regions with NSSI. Then, Allen's Human Brain Atlas database was used to compare with the information on the abnormal brain regions of people with NSSI to find the genetic information related to NSSI. In addition, gene enrichment analysis was carried out to find the related pathways and specific cells that may have differences. ResultsThe differences between NSSI participants and non-NSSI participants were as follows: positive refocusing (t = −4.74, p < 0.01); refocusing on plans (t = −4.11, p < 0.01); positive reappraisal (t = −9.22, p < 0.01); self-blame (t = 6.30, p < 0.01); rumination (t = 3.64, p < 0.01); catastrophizing (t = 9.10, p < 0.01), and blaming others (t = 2.52, p < 0.01), the precentral gyrus (t = 6.04, pFDR < 0.05) and the rolandic operculum (t = −4.57, pFDR < 0.05). Rolandic operculum activity was negatively correlated with blaming others (r = −0.20, p < 0.05). Epigenetic results showed that excitatory neurons (p < 0.01) and inhibitory neurons (p < 0.01) were significant differences in two pathways, “trans-synaptic signaling” (p < −log108) and “modulation of chemical synaptic transmission” (p < −log108) in both cells. ConclusionsPeople with NSSI are more inclined to adopt non-adaptive cognitive emotion regulation strategies. Rolandic operculum is also abnormally active. Abnormal changes in the rolandic operculum of them are associated with non-adaptive cognitive emotion regulation strategies. Changes in the excitatory and inhibitory neurons provide hints to explore the abnormalities of the neurological mechanisms at the cellular level of them.Trial registration number NCT04094623
Read full abstract