ABSTRACT Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 μg/m3 were higher than DPMtp (0.91 μg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m3, respectively) as compared with open (0.44 and 1.3 μg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 μg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m3 for DPMtp and 0.05 μg/m3 for PMck. IMPLICATIONS PM2.5 measurements in two Seattle school buses showed average concentrations of 26 and 12 μg/m3 with windows closed and open, respectively. Virtually all PM2.5 was car bonaceous. Tracer measurements showed that bus self-pollution contributed approximately 50% of total PM2.5 concentrations with windows closed and 15% with windows open, with over three-quarters of these contributions attributed to crankcase emissions. Maintaining ventilation in buses clearly reduces total PM2.5 exposures and that from the buses' own emissions. The dual tracer method now offers researchers a new technique for explicit identification of single source contributions in settings with multiple sources of carbonaceous emissions.
Read full abstract