The renewal of underground infrastructure is an emerging challenge for most municipalities in the United States. As compared to trenchless cured-in-place pipes (CIPPs), excavation technologies (ETs) have adverse impacts on the environment. Due to its lower ecological impact, trenchless technology is preferred in comparison to conventional pipe replacement. The selection of the most appropriate method depends on factors such as the existing sewer network, traffic disruption, soil conditions, and environmental safety. Recent concerns pertaining to environmental impact have increased the demand for reduced carbon footprints. The objectives of this paper are the following: (1) to present a comprehensive review on the achievements achieved over the years in understanding the factors influencing environmental emissions from the use of CIPP and ETs and (2) to analyze and compare the environmental emissions produced from CIPPs and ETs for 8-inch-, 10-inch-, and 12-inch-diameter pipes. Published papers from 1990 through 2024 have been included, which reported emissions from both alternatives. A comparison of total environmental emissions produced from both the processes is presented. The literature review and analysis suggest that higher emissions are a result of higher fuel consumption, material use, and input allocation. The emissions of pipeline renewal methods were evaluated using USEPA’s TRACI 2.1 methodology within SimaPro software. The analysis showed that CIPP renewal greatly reduced carbon emissions when compared with ET. CIPPs exhibited approximately 70% less ecological impact, 75% less impact on human health, and 60% less depletion of resources. CIPPs reduced carbon emissions by 78–100% in comparison to ETs. The recycling materials used in CIPPs potentially reduce the environmental impact by 10%, making them highly sustainable. The installation phase should therefore be carefully analyzed for factors like the pipe material and the pipes’ external diameter in view of achieving the greatest sustainability of these methods, as these characteristics affect emissions. It can be inferred that the comparison of the emissions of both alternatives is extremely vital for sustainable underground infrastructure development.
Read full abstract