We present phenomenological formulas for virtual photon emission rates from a thermalized quark-gluon plasma (QGP) that include bremsstrahlung and annihilation with scattering (AWS) mechanisms along with the Landau-Pomeranchuk-Migdal (LPM) effects. For this purpose we follow the approach of generalized emission functions (GEF) for virtual photon emission, we showed earlier for a fixed temperature and strong coupling constant. In the present work, we extend the LPM calculations for several temperatures and strong coupling strengths, photon energies (q{sub 0}), photon mass (Q{sup 2}), and quark energies (p{sub 0}). We generalize the dynamical scaling variables, x{sub T},x{sub L}, for bremsstrahlung and AWS processes that are now functions of variables p{sub 0},q{sub 0},Q{sup 2},T,{alpha}{sub s}. The GEF introduced earlier, g{sub T}{sup b},g{sub T}{sup a},g{sub L}{sup b},g{sub L}{sup a}, are also generalized for any temperatures and coupling strengths. From this, the imaginary part of the photon polarization tensor as a function of photon mass and energy has been calculated as a one-dimensional integral over these GEF and parton distribution functions in the plasma. By fitting these polarization tensors obtained from GEF method, we obtained a phenomenological formula for virtual photon emission rates as a function of (q{sub 0},Q{sup 2},T,{alpha}{sub s}) that includes bremsstrahlung and AWSmore » mechanisms with LPM effects.« less
Read full abstract