The industrial sector's need for efficient electric motors is paramount for both energy conservation and climate change mitigation. This study evaluates the environmental impacts of three motor technologies—Squirrel Cage Induction Motors (SCIM) at IE3, Synchronous Reluctance Motors (SynRM), and Permanent Magnet Synchronous Motors (PMSM) at IE5—using a life cycle assessment (LCA) approach with the EuP Eco-Report tool. The focus is on 11 kW, 4-pole motors, representing typical industrial applications. Results show that IE5 SynRMs and PMSMs offer significantly higher operational efficiency, with PMSMs reaching 95 % efficiency compared to 92.7 % for SCIMs. However, the environmental trade-offs are notable: SynRMs require 156.9 kg of materials, including 80.5 kg of electrical steel, while PMSMs demand 1.8 kg of rare earth materials, contributing to higher manufacturing impacts. Total energy consumption over 15 years in the operational phase reveals a consumption of 3.88 TJ for SCIM, 3.83 TJ for SynRM, and 3.79 TJ for PMSM, indicating substantial savings from higher efficiency motors. Despite their efficiency, PMSMs exhibit higher impacts in water use (1172 l in manufacturing) and heavy metal emissions, primarily due to challenges in recycling rare earth components. This analysis highlights the environmental cost-benefit trade-offs between improving operational efficiency and managing the resource-intense production of higher-efficiency motors. As electric motor technology evolves, careful consideration of life cycle impacts, especially in manufacturing and end-of-life phases, is essential to achieve sustainable energy solutions.
Read full abstract