We experimentally demonstrate bridge-coupled metallo-dielectric nanolasers that can operate in the in-phase or out-of-phase locking modes at room temperature. By varying the length of the bridge, we show that the coupling coefficients can be realized in support of the stable operation of any of these two modes. Both coupled nanolaser designs have been fabricated and characterized for experimental validation. Their lasing behavior has been confirmed by the spectral evolution, light-in light-out characterizations, and emission linewidth narrowing. The operating mode is identified from the near-field and far-field emission pattern measurements. To the best of our knowledge, this is the first demonstration of mode selection in bridge-coupled metallo-dielectric nanolasers, which can serve as building blocks in nanolaser arrays for applications in imaging, virtual reality devices, and lidars.