To improve the slip rate control effect for different road conditions during emergency braking of wheel hub motor vehicles, as well as to address the problems of uncertainty and nonlinearity of the system when the electro-mechanical braking system is used as the actuator of the ABS, a hierarchical control strategy of the anti-lock braking system (ABS) using active disturbance rejection control (ADRC) is proposed. Firstly, a vehicle dynamics model and an ABS model based on the EMB system are established; secondly, a speed observer based on the dilated state observer is used in the upper layer to design a pavement recognition algorithm, which recognizes the current pavement and outputs the optimal slip rate; then, an ABS controller based on the ADRC algorithm is designed for the lower layer to track the optimal slip rate. In order to verify the performance of the pavement recognition method and control strategy, vehicle simulation software is used to establish the model and simulation. The results show that the road surface recognition method can quickly and effectively recognize the road surface, and comparing the emergency braking control effects of PID and SMC under different road surface conditions, the ADRC strategy has better robustness and reliability, and improves the braking effect.
Read full abstract