Medulloblastoma (MB) is one of the most prevalent embryonal malignant brain tumors. Current classification organizes these tumors into four molecular subgroups (WNT, SHH, Group 3, and Group 4 MB). Recently, a comprehensive classification has been established, identifying numerous subtypes, some of which exhibit a poor prognosis. It is critical to establish effective subtyping methods for accurate diagnosis and patient's management that strikes a delicate balance between improving outcomes and minimizing the risk of comorbidities. We evaluated the ability of Nanopore sequencing to provide clinically relevant methylation and copy number profiles of MB. Nanopore sequencing was applied to an EPIC cohort of 44 frozen MB, benchmarked against the gold standard EPIC array, and further evaluated on an integrated diagnosis cohort of 116 MB. Most MB of both cohorts (42/44; 95.5% and 106/116; 91.4% respectively) were accurately subgrouped by Nanopore sequencing. Employing Flongle flow cells for 18 MB allowed a more rapid and cost-effective analysis, with 94.4% (17/18) being correctly classified. Nanopore sequencing enabled us to accurately subtype 28/30 (93.3%) MB. This study, conducted on the largest cohort of MB analyzed with Nanopore sequencing to date, establishes the proof of concept that this modern and innovative technology is well-suited for MB classification. Nanopore sequencing demonstrates a robust capacity for precise subtyping of MB, a critical advancement that holds significant potential for enhancing patient stratification in future clinical trials. Its ability to deliver quick and cost-effective results firmly establishes it as a game-changer in the field of MB classification.
Read full abstract