Oxylipins and their precursors (long-chain polyunsaturated fatty acids, LCPUFAs) are key intercellular signaling molecules influencing the inflammatory response. Each oxylipin has pro- and/or anti-inflammatory effects, and the relative abundance of different oxylipins can alter the inflammatory balance, making it important to clarify the oxylipin profile of breast milk for optimal infant health. The extraction, identification, and simultaneous quantification of oxylipins in breast milk are challenging due to the structural similarity, limited stability, and the low endogenous concentration of oxylipins and the complex matrix of breast milk. This study aimed to develop a solid phase extraction-ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry (SPE-UPLC-MS/MS) method for the comprehensive and specific quantification of oxylipins and their precursors in breast milk. The LC conditions (including column, mobile phase, and gradient conditions) and SPE procedure (including SPE cartridges, elution solvent, and elution volume) were optimized to achieve accurate quantification and better analyte recovery. A single 18-minute chromatographic run allows for the quantification of 20 oxylipins and 5 PUFAs. The results showed good linearity (R2 > 0.99) over the concentration range of 2 to 100 ng/mL, with the instrument detection limits ranging from 0.01 to 0.90 ng/mL for oxylipins and 0.02 to 0.59 ng/mL for PUFAs. The method is rapid, sensitive, and reproducible (RSD ≤ 10%) and is suitable for the quantitative analysis of oxylipins and their precursors in infant formula samples.
Read full abstract