Two experiments examined the effects of sowing time and depth (surface and 10, 25, 50 mm) on emergence of Danthonia richardsonii Cashmore and Danthonia linkii Kunth. Experiment 1 was conducted from January to December 1990 on a loam/sand mixture in boxes. Emergence was highest in both species for seeds sown onto the soil surface in summer and autumn (P < 0.05). Sowing at any depth at any time of the year, or surface sowing in winter and spring, markedly reduced emergence. Experiment 2 was conducted in the field at Tamworth, northern New South Wales from September 1991 to August 1992, on a red brown earth and a black earth. This study confirmed that emergence in both species was highest from surface sown seed. Field emergence was lowest in winter, but in contrast to experiment 1, it was higher in spring, particularly on the black earth. Seedling emergence appeared to be related to mean maximum temperature, decreasing in winter as it declined below 20�C, and increasing in spring when it was greater than 23�C. Differences in seed weight were reflected in emergence of D. richardsonii and D. linkii in experiment 1. Similar emergence was recorded for the loamlsand mixture and sand, indicating that there was little effect of texture. Phalaris aquatica L. cv. Sirosa surface sown in December had lower emergence ( P < 0.05) than both Danthonia spp., but emergence of this larger seeded cultivar was higher at depths of 10 and 25 mm. Laboratory studies to determine reasons for the low emergence of D. richardsonii and D. linkii from depth, indicated that neither had an obligate light requirement for germination. Depth, however, reduced germination (P < 0.05) compared with surface sowing of seed. Seedlings at depth also were observed to have slower rates of shoot and root elongation. In the field, the most successful establishments of D. richardsonii and D. linkii seedlings are likely to occur from surface sowings in April and May. Sowing in spring may also be possible if mean maximum soil temperatures exceed 23�C, and seedlings can establish before the onset of hot, dry conditions in summer.