Recently, the null field method (NFM) is proposed by J.T. Chen with his groups. In NFM, the fundamental solutions (FS) with the field nodes Q outside of the solution domains are used in the Green formulas. In this paper, the NFM is developed for the elliptic domains with elliptic holes. First, the FS is expanded by the infinite series in elliptic coordinates. When the Fourier approximations of the boundary conditions on the elliptic boundaries are chosen, the explicit algebraic equations are derived, and the semi-analytic solutions can be found. Next, the interior field method (IFM) is developed, which is equivalent to the NFM when the field nodes approach the domain boundary. Moreover, the collocation Trefftz method (CTM) is also employed by using the particular solutions in elliptic coordinates. The CTM is the simplest algorithm, has no risk of degenerate scales, and can be applied to non-elliptic domains. Numerical experiments are carried out for elliptic domains with one elliptic hole by the IFM, the NFM and the CTM. In summary, for Laplace׳s equation in elliptic domains, a comparative study of algorithms, errors, stability and numerical results is explored in this paper for three boundary methods: the NFM, the IFM and the CTM.
Read full abstract