A phase generated carrier (PGC) demodulation scheme is always accompanied by nonlinear errors. We propose a fusion of PGC differential and cross multiplying (PGC-DCM), geometric fitting, and arctangent (Atan) algorithms for fiber optic interferometric sensors to eliminate nonlinear errors. The output amplitude of the PGC-DCM algorithm is used to judge whether the Lissajous figure of quadrature signals is larger than 1/2 ellipse arc. When the Lissajous figure exceeds 1/2 ellipse arc, the contaminated quadrature signals are corrected by the ellipse correction parameters calculated from the geometric fitting; otherwise, the previous fitting parameters are employed for correction. Geometric fitting is realized by minimizing the Sampson error, and its failure problem under small signals is solved by using the temporary stability of fitting results. Finally, desired signals are extracted from the corrected quadrature signals by the Atan algorithm. Experimental results show that the fusion combines the merits of the three algorithms and expands the application of the geometric fitting in PGC demodulation schemes.