Abstract

Elliptic curves are commonly used to outline various geophysical objects, natural and artificial bodies, trajectories of the planets, satellites, elementary particles. Utilizing these curves, many theoretical and applied problems in the field of mechanics, geophysics, and mathematical physics can be solved. However, the dependences for finding the length of individual sections (arcs) of the ellipse that are in demand for engineering practice have not been developed up to the present day. The article deals with analytical dependences for determining the length of the arc and entire ellipse that are obtained on the basis of the representation of incomplete and complete elliptic integrals of the 2nd kind via elementary functions. These dependences coincide with the known exact formulas for the boundary counters of an ellipse, namely, a circle and a horizontal segment of a straight line (thin plate). Graphs of the dependence of the ellipse arc length on the central angle and the ratio of the semiaxes are also given. Comparison of the obtained results of solving the test problem by using the proposed method with the reference values found from numerical calculation using the “Mathematic” software has showed a good agreement (≤ 0.5%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.