Smallpox eradication and lack of adequate animal model for smallpox infection underlies a necessity to assess immunogenic and protective properties of genetic engineering-created live attenuated smallpox vaccines in several animal models of orthopoxviral infections. Here we compared immunogenic and protective properties of the recombinant vaccinia virus (VACV) LIVP-GFP intradermally (i.d.) inoculated to mice, guinea pigs and rabbits. LIVP-GFP immunization in all animal species was applied at dose of 2 × 104 or 2 × 106 PFU. Control animals were injected with saline. Blood sampling was performed on day 28 after virus LIVP-GFP or saline inoculation. Blood samples were taken intravitally from the retro-orbital venous sinus in mice, heart in guinea pigs or marginal ear vein in rabbits. Serum samples were isolated by precipitating blood cells via centrifugation. The serum anti-VACV IgG titers were determined by ELISA. On day 30 post-immunization animals were intranasally challenged with lethal dose of host specific orthopoxvirus species. Mice were infected by cowpox virus (CPXV) strain GRI-90 at dose 68 LD50, guinea pigs – by VACV GPA at dose 56 LD50, rabbits — by VACV HB-92 at dose 100 LD50. All animals in control group died afterwards, whereas all animals immunized by attenuated recombinant virus LIVP-GFP at dose 2 × 106 PFU survived. In case of the LIVP-GFP immunization at dose 2 × 104 PFU, 88% of mice, 67% of rabbits and 50% of guinea pigs survived after being challenged with species-specific CPXV, VACV HB-92, and VACV GPA. ELISA data for the blood serum samples revealed a correlation between level of VACV-specific antibodies and level of protection in animal species. Based on the data obtained, it could be concluded that all three “animal–orthopoxvirus” models allow to provide with a proper evaluation of immunogenicity and protectiveness for generated modern attenuated vaccines against smallpox and other orthopoxviral human infections. Upon that, it was shown that BALB/c mouse strain was the most convenient investigational host species.
Read full abstract