A set of 53 individuals from a population highly exposed to airborne hexachlorobenzene (HCB) were selected to study the elimination kinetics of this chemical in humans. The volunteers provided blood, 24-hr urine, and feces samples for analysis of HCB and metabolites. The serum HCB concentrations ranged from 2.4 to 1,485 ng/mL (mean +/- SD, 124 +/- 278), confirming that this human population has the highest HCB blood levels ever reported. All analyzed feces samples contained unchanged HCB (range, 11-3,025 ng/g dry weight; mean +/- SD, 395 +/- 629). The HCB concentration in feces strongly correlated with HCB in serum (r = 0.85; p < 0.001), suggesting an equilibrium in feces/serum that is compatible with a main pulmonary entrance of the chemical and low intestinal excretion of nonabsorbed foodborne HCB. The equilibrium is also compatible with a nonbiliary passive transfer of the chemical to the intestinal lumen. Two HCB main metabolites, pentachlorophenol (PCP) and pentachlorobenzenethiol (PCBT), were detected in 51% and 54% of feces samples, respectively. All urine samples contained PCP and PCBT, confirming the conclusions of a previous study [Environ Health Perspect 105:78-83 (1997)]. The comparison between feces and urine showed that whereas daily urinary elimination of metabolites may account for 3% of total HCB in blood, intestinal excretion of unchanged HCB may account for about 6%, thus showing the importance of metabolism in the overall elimination of HCB. The elimination of HCB and metabolites by both routes, however, appears to be very small (< 0.05%/day) as compared to the estimated HCB adipose depots. Features of HCB kinetics that we present in this study, i.e., nonsaturated intestinal elimination of HCB and excretion in feces and urine of inert glutathione derivatives, may explain, in part, the absence of porphyria cutanea in this human population heavily exposed to HCB.
Read full abstract