Surface incoming shortwave (solar) radiation data are an important component of many scientific analyses, but direct measurements are not commonly available. Estimates can be obtained from gridded meteorological analysis or reanalysis systems, such as the Global Data Assimilation Systems (GDAS) and Modern Era Retrospective Reanalysis System (MERRA-2), or calculated using empirical models dependent on meteorological variables such as air temperature. The purpose of this analysis was to compare multiple methods for estimating daily shortwave radiation in a tropical highland environment in Ethiopia. Direct solar radiation outputs of GDAS and MERRA-2, topographically corrected outputs of the two analysis systems, and empirically estimated solar radiation values calculated with the systems’ air temperature data were compared to see which produced the most reliable radiation values. GDAS appeared to underestimate the seasonal variability, resulting in low correlation (R2) with in situ data and large mean bias error (MBE). In comparison, MERRA-2 did not underestimate variability, but produced larger bias than the empirical model estimates. There was an improvement in correlation and reduction in MBE when using the GDAS air temperature predictions in the empirical model, but the opposite was true for MERRA-2. The empirical model using station air temperature data (stationT) produced the highest correlation across all four stations, with best performance at the lower elevation sites. The direct shortwave radiation outputs of MERRA-2 produced comparable correlation values, with larger R2 at stations at higher elevation. Topography possibly influenced these results, as MERRA-2 performed comparably to stationT at the stations in moderate terrain, but not in steeper terrain. This work can serve as a starting point for analyses in other tropical highland regions, where continuous in situ solar radiation data are rarely available.